
Mauve Paper: Developer Incentive Protocol
Nebulas Research

October 2018
Version:1.0.0

Contents
1 Introduction 1

2 Background 4
2.1 DApp’s Developer Incentive . 4
2.2 Nebulas Rank . 5
2.3 Voting Mechanism . 5

3 Developer Incentive Model 6
3.1 Model Representation . 7
3.2 Voting Action . 8
3.3 Sample Time Interval . 10

4 Developer Incentive Protocol 10
4.1 Voting Capacity and Contributory Value 10
4.2 Ranking Score . 12
4.3 Final Reward . 13

5 Property Analysis 14
5.1 Buy Over Voters . 14
5.2 Malicious Splitting . 16
5.3 Sybil Attack . 17

6 Implementation of DIP 17
6.1 How to Distribute Rewards . 17
6.2 Updating of DIP . 18

7 Future Work 18
7.1 Muli-dimension Voting . 18
7.2 Invocations Among DApps . 19

Appendix A Proof 21
A.1 Proof of Property 3 . 21
A.2 Proof of Property 4 . 21
A.3 Proof of Corollary 2 . 23
A.4 Proof of Property 5 . 24

Appendix B Change log 24
B.1 2019.4.8 change log . 24

1 Introduction
Generally, developers develop applications on some application platforms (like Win-
dows1, Linux2, macOS3, iOS4, Android5 etc.) and benefit from their applications in tra-
ditional software development industry. The way to get the benefits varies for different
developers, including but not limited to salaries paid by software enterprises, revenue
by selling the application licenses or displaying advertisements in their applications.

However, the enterprises who build the application platforms also benefit from the
applications, while the benefits are not shared with the developers. Let’s take the
operating system as an example here: a UI/UX designer wants to use Sketch, as we
know that the application only works on macOS device, so besides paying for the
application itself, the designer needs to pay Apple6 for the device to use the application.
Apparently, Apple benefits from such user while Apple does not share the benefits with
the Sketch developers. Another similar example is that users have to pay Apple or
Microsoft7 to use AutoCAD8. In such cases, the key factor that users choose a platform
is whether the platform supports required applications for users. In other words, high-
quality applications are critical to the development of an application platform. Based
on the above considerations, application platforms ignore the interests of developers,
to a certain extent, infringing the interests of developers.

In the blockchain industry, the interests of DApp (Decentralized Application) devel-
opers are ignored by platforms as well. In 2014, Ethereum community proposed “Smart
Contract”, which extended blockchains’ ability from peer-to-peer cryptocurrency net-
works to decentralized application platforms. However, in comparison with traditional
centralized development industry, the ways of obtaining revenue for developers have no
significant difference — decentralized application developers still can not benefit from
the increment of the blockchain system’s value.

Generally speaking, new-block rewards represent incremental value of the blockchain
system and the distribution of such rewards determines the incentive direction of the
decentralized system. In our opinion, a blockchain system’s incremental value essen-

1https://www.microsoft.com/en-us/windows
2https://en.wikipedia.org/wiki/Linux
3https://en.wikipedia.org/wiki/MacOS
4https://en.wikipedia.org/wiki/IOS
5https://en.wikipedia.org/wiki/Android
6https://en.wikipedia.org/wiki/Apple_Inc.
7https://en.wikipedia.org/wiki/Microsoft
8https://en.wikipedia.org/wiki/AutoCAD

1

https://www.microsoft.com/en-us/windows
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/Android
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/AutoCAD

tially comes from the implicit values from users’ data, which should be distributed to
all contributed parties, including DApp developers. However, what we see in practice
is that, in most PoW blockchain systems, represented by Bitcoin, new-block rewards
are distributed to miner nodes; In PoS (proof of stake) based blockchain systems, the
new-block rewards are assigned to stake holders. Along with it, the interests of DApp
developers are somewhat infringed.

Conceptually, a DApp is a set of smart contracts with a series of specific function-
alities, while a smart contract is a computer protocol intended to digitally facilitate,
verify, or enforce the negotiation or performance of a contract. Smart contracts allow
the performance of credible transactions without third parties9.

From the technical architecture’s point of view, most DApps usually use smart con-
tracts as the back-end, while using common front-end technologies and its interactions.
DApps’ forms can be either a traditional PC client, a mobile application or a web
application.

We believe that the relationship among decentralized application platforms, DApp
developers and DApp users is mutually reinforcing and symbiotic. Firstly, the emer-
gence of decentralized application platforms enlarges the group of blockchain developers.
More and more developers try to develop DApps that meet different requirements and
benefit from the development of DApps. Secondly, DApp developers provide a rich
variety of DApps, expanding the application scenarios of the blockchain, and bringing
more incremental users to the blockchain. Finally, DApp users drive the continuous
optimization and upgrade of decentralized application platforms, increasing the mobil-
ity of tokens on the decentralized application platform, making the whole blockchain
system develop.

It should be noted that the developers described here only refer to developers on
the decentralized application platform, not specifically the Nebulas developers, nor
the developers of the blockchain system itself. Notice that we mean DApp developers
instead of Nebulas DApp developers or blockchain system developers. Thus, we shall
use developers short for DApp developers without ambiguity. Also, a DApp developer
may be a stake holder. He may benefit from being a stake holder and that benefit is
not considered as sharing the increase value of blockchains. The interests of being a
developer can still be ignored or infringed.

It’s inappropriate to directly distribute a platform’s increased value to correspond-
ing application developers. On one hand, the revenue is owned by centralized orga-
nizations, like an enterprise, and application developers have no chance to know the
details or participate in the sharing of revenues. Second, it is difficult to quantify each

9https://en.wikipedia.org/wiki/Smart_contract

2

https://en.wikipedia.org/wiki/Smart_contract

developer’s contribution to the growth of application platforms so the fairness of the
reward mechanism is hard to be guaranteed. Fortunately, this situation can be changed
in blockchain industry since each invocation to smart contracts by each user is publicly
recorded on blockchain. Thus, it is possible to reward or incentive each DApp developer
by quantifying each DApp’s contribution.

An ideal incentive mechanism should satisfy some basic properties:

• Fairness: the protocol should maintain objectivity when rewarding developers,
that is, every DApps should be equally treated and their usages are evaluated
veritably, even there are some potential manipulations.

• Effectiveness: the reward should reflect user preference, that is, the DApps with
high reward are ones that frequented by active users while the DApps with low
or no reward are unwelcome.

In this paper, we propose Developer Incentive Protocol (DIP), which aims at reward-
ing and incentivizing developers, enabling the developers to benefit from the develop-
ment of the decentralized application platform. Naturally, an ideal developer incentive
protocol does not exist since the users’ evaluations to DApps are subjective and multi-
dimensioned. So the DIP introduced in the paper still has space for improvement.
However, the balance in this mauve paper is innovative, that is, under the premise of
guaranteeing the interests of DApp developers, in terms of resistance to manipulation,
we make the greatest efforts.

DIP is designed based on the existing Nebulas Rank (NR) [1] and it benefits from
some good features of NR. Intuitively, DApp evaluation is reduced to a voting process
in DIP.

An invocation from a particular user is treated as a vote and user’s voting capacity
is a function of his/her NR. The developers will get the rewards from the system
eventually, according to the voting results.

Besides giving the theoretical model of Developer Incentive Protocol, we also analyze
the properties against manipulations and illustrate the implementation of DIP, such as,
how to adjust and update DIP, which specify the direction of the actual landing of the
DIP.

3

Special Hint: As the mauve paper focus on discussing Developer Incen-
tive Protocol, it greatly upgrades and expands the relevant chapters
of the Nebulas Technology White Paper [2](version 1.02 released in
April 2018). Compared with the conceptual demonstration one year
ago, after a year of in-depth thinking and practical verification, we
are confident and able to design more rigorous algorithms and provide
clear solutions or directions for more practical details of the Nebulas
Incentive Protocol.

2 Background
The DIP given by this mauve paper referred lots of related works and also extended
our previous results. Here we introduce the related works, which play a significant role
for the reference and guidance of this mauve paper.

2.1 DApp’s Developer Incentive

As far as we know, currently, no decentralized platform on blockchain offers a long-term
effective incentive mechanism for DApp developers. As a representation of blockchain
2.0, Ethereum makes a breakthrough to involve Turing-complete smart contracts. A
number of DApps emerge on Ethereum, including game, gambling, crowd sourcing,
credit and many other types. In particular, the CryptoKitties in the late 2017 and
Fomo3D in 2018 attract most attentions, which once cause network congestion.

Actually, like the two famous DApps, most DApps gain utilities only by charging
fees to users, unable to benefit from the increase of Ethereum’s value or the new-block
rewards.

With the lack of the incentive of developer, the application scenarios of DApps has
also been affected to a certain extent. For example, implicitly, free DApps may be ab-
sence due to the difficulty for getting a return. As a result, the quantity, quality and di-
versity of DApps are affected. In contrast, a fair and effective mechanism for incentiviz-
ing developers brings developers’ concentration to the development of DApps, which
further promotes the prosperity and sustainable development of the whole blockchain
ecosystem.

To a certain extent, many emerging blockchain systems realize the necessity of incen-
tive mechanism for building blockchain ecosystems. For example, in Nebulas Incentive
Program, more than 6781 DApps have been generated and a large number of excellent
development teams can go to the front desk and obtain high investments.

4

Along with it, other public blockchains also launched short-term incentive programs
based on centralized management. Such incentive programs mainly aim to publicize to
the community with official evaluations taking a major role, without long-term sustain-
ability.

2.2 Nebulas Rank

Nebulas Rank (NR) [1] quantifies each account’s contribution to the total economic
output and has nice properties against manipulations. In particular, Nebulas Rank
introduces the Wilbur function, which has the following properties:

Property 1. For any two positive variables x1,x2, the sum of their functions is less than
the function of their sum.

f(x1 + x2) > f(x1) + f(x2) x1 > 0, x2 > 0 (1)

Property 2. For any two positive variables x1,x2, when they tend to infinity, the sum
of their functions tends to the function of their sum.

lim
x1→∞,x2→∞

f(x1 + x2) = f(x1) + f(x2) x1 > 0, x2 > 0 (2)

As the basis of NR, the two properties also offer nice properties for DIP against ma-
nipulations.

2.3 Voting Mechanism

As mentioned earlier, in DIP, the process that users use DApps can be regarded as
a process that voters vote for DApps. The latter’s incentive mechanism is similar to
ranking algorithms.

Regarding the voting mechanism and ranking algorithm, there are lots of related
work in various fields, which we have referred and show examples as follows.

One of the most famous results is the Arrow’s Theorem, which shows that no ranking
algorithm can simultaneously satisfy Pareto Efficiency, i.e. the ranking results satisfies
the majority’s interest, non-dictatorship and independent of irrelevant alternatives, i.e.
the relative ranking of two candidates is not affected by any third candidate.

5

The result implies that no ranking algorithm can cover everything. So the DIP in
this mauve paper will focus on the important and well-known attributes.

In the real life, there are a lot of scenarios requiring ranking algorithms. A typical
example is the buyers’ impressions to sellers on Amazon and Taobao. Sellers with
higher reputation will be given better display slots, and thus obtain more attentions
and higher click-through rates (CTRs). In particular, there are similar problems on
such e-commerce platforms, like Sybil attack, i.e., creating fake transactions or buy
over buyers to obtain 5-star evaluations.

For now, these centralized platforms mostly rely on machine learning to distinguish
normal and fake users [3, 4, 5]. However, practical results show that such methods are
not ideal. [6] points out that even artificial identifications can not effectively distinguish
such accounts. [7] gives an algorithm that eliminates the incentive of such manipula-
tions, based on mechanism design. Although its model is different form us, it can be
used as a significant reference.

[8] introduces the ranking algorithm for postings in a social network community,
which combines the users’ votes and time declining. [9] introduces the ranking algorithm
for postings in Reddit, which involves the situation where users can vote in the negative.
[10] introduces Reddit’s ranking algorithm for the comments, taking the confidence
interval into account. IMDB [11] introduces the idea of Bayesian Model Averaging to
film rankings, which can narrow the gap among different films due to the number of
voters.

Because of properties against manipulation in NR, the DIP proposed in this mauve
paper can distinguish normal users and fake users more clearly. Therefore, the emphasis
of this mauve paper is to transfer users’ NR values to DApps’ ranking scores through
interactive behaviors.

3 Developer Incentive Model
The Developer Incentive Protocol, DIP, including two processes: ranking the DApps
and distributing the rewards.

Firstly, constructing a good ranking system can provide third-party developers with
a convenient and effective platform to promote applications and provide users with a
reliable recommendation system. Like the App Store platform, good Apps have top
positions on the ranking list and thus receive more attention from users. Secondly, users
have better experience when they obtain high-quality Apps directly from the ranking
list. Furthermore, Apps’ ranks can be used in keyword search. Just like the search
systems in search engines and e-commerce platform, listing keyword-related Apps in

6

the search results according to their ranks is satisfactory to users.
On the other hand, as we shown in Section 2, the purpose of DIP is to provide

rewards for good DApps’ developers, thus further increases developers’ incentives to
design good DApps and promotes the ecosystem development. So the second process
of DIP is to design a fair rewarding mechanism, according to DApps’ ranks.

3.1 Model Representation

In this section we introduce necessary notations and symbols in DIP model.

• A = {a1, a2, . . . , am} represents the set of users that participate the ranking
system during a time period. We use voters to denote such users. Note that a
user is defined to be a voter only if he invokes some DApp’s EOA(External Owned
Account) in a time period. Define

A∗ = {a1, a2, . . . , am, am+1, . . . , am∗}

to be the set of all users in the community during the same time period, i.e.,
m∗ −m users do not invoke any DApp.

• D = {d1, . . . , dn} represents the set of DApps during a time period.

• eij, i = 1, 2, . . . ,m, j = 1, 2, . . . , n represent the times that voter ai invokes DApp
dj. Due to the publicity and decentralization of blockchain, the DIP model is
different from the ranking system in traditional centralized application markets.
Generally speaking, DIP ranks the DApps according to users’ invocation behav-
iors, in a decentralized environment. The details are shown in the next section.

• Γi, i = 1, 2, . . . ,m represent voter ai’s voting capacity during a time period. [1]
proves that a user’s NR value is an effective measure of his account’s value. So in
DIP, NR is also used as a significant criterion to decide users’ voting capacities.

• Γij, i = 1, 2, . . . ,m, j = 1, 2, . . . , n represent the contributory value of voter ai to
DApp dj, which can be regarded as the number of votes where ai is willing to
vote for dj.

• Sj, j = 1, 2, . . . , n represent DApp dj’s ranking score, which is determined by its
total contributory values from all voters. Intuitively, the ranking scores determine
DApps’ positions on the ranking list.

7

d1

d2

d3

d4

d5

S1

S2

S3

S4

S5

U1

U2

U3

U4

U5

a1

a2

a3

a4

Γ1

Γ2

Γ3

Γ4

eij

Figure 1: Interactions between voters and DApps

• M represents the total amount of the reward pool for developers, comes from the
new-block rewards. The actual reward would be properly reduced according to
the participation rate of the whole community during the time period.

• Uj, j = 1, 2, . . . , n represent the final reward of DApp dj, which is determine by
actual total reward and all DApps’ ranking scores.

To sum up, the interactions between voters and DApps can be represented by the
bipartite graph in Figure 1.

3.2 Voting Action

In a centralized App Store10, the system can record specific information such as times
that a App has been downloaded, which is a key factor for determining its rank. How-
ever, in situations of Blockchain, the way that users use DApps is to invoke smart con-
tracts’ addresses, e.g., represented as the times that user ai invokes DApp di, denoted
by eij. Compared to traditional information about downloads, DIP, taking invocation
information as the date sources, has the following advantages:

• The number of invocations are recored on the blockchain, which is hard to be
tempered and is more open and transparent, compare to centralized methods
such as recording the downloads.

• The number of invocations is more fine-grained compare to the downloads data,
since downloads data only record users’ one-shot behaviors. But a good DApp
should have user stickiness. Therefore the number of invocations are more rea-
sonable to reflect users’ real behaviors.

10https://en.wikipedia.org/wiki/App_store

8

https://en.wikipedia.org/wiki/App_store

Actually, there are other available information when users invoke DApps. For exam-
ple, the amount of gases that has been expended and possible token transfers involved
in an invocation. However, DIP takes neither of them into consideration.

Firstly, the amount of expended gases depends on the executed instructions within
the smart contracts each time a user invokes a DApp, where the later is not related
to the DApp’s own quality. Moreover, in the current Nebulas system, the average
amount of expended gases during each invocation is at the order of 10−8 NAS, which
is negligible.

The reason why we do not consider token transfers is the lack of an effective method
against manipulation. Intuitively, the wilinesses of users to pay additional tokens when
invoking the DApp improve the DApp’s recognition. However, in practice, when a user
pays tokens to a DApp, the tokens’ final destination could belong to the following three
cases:

1. The tokens finally belongs to the developer of the DApp. In this case, it is
believed that the user voluntarily pays to the DApp. Since the DApp’s developer
has benefited from the user, it is not that meaningful to further increase his rank
and reward.

2. The DApp itself requires token transfer, such as gambling DApps, which leads
a huge amount of token transfer between the user and the DApp. It’s a normal
phenomenon. However, the DApp’s rank should not be increased accordingly, due
to the fact that the user’s purpose for paying tokens is to gather profits, which
does not reflect the DApp’s quality.

3. The DApp’s developer commits that all tokens paid to the DApp will be returned
to the user. It is actually a kind of manipulation, which would be aggravated if
we increases the DApp’s rank and reward accordingly.

In practice, without analyzing the source code of smart contracts, we are not able to
determine which case token transfers between users and DApps belongs to and in either
case we have explained reasons for not involving DApps’ ranks. So the algorithm in
DIP will be independent of token transfers.

In the DIP model, a user ai ∈ A is essentially an account address. As referred
in [1], a user can actually control multiple account addresses. Since there is no cost for
creating new accounts, the user can forge several addresses which he controls to vote
— the Sybil attack. Similarly, a developer can divide his DApp into several addresses,
that is, split his DApp into several low-quality DApps, and obtain all rewards from

9

split DApps. In the meanwhile, a developer can buy over one or more users to vote for
his DApp.

We analyzed all manipulations above when designing DIP and gave corresponding
solutions. The details about DIP against manipulation are in Section 5.

3.3 Sample Time Interval

In Section 3.1, we illustrated that the NR is a significant criterion to determine voters’
voting capacities. However, according to the definition in [1], the sampling period of DIP
data is much longer than the sampling period of NR data, which means that during the
process for recording invocation behaviors, users’ NRs may vary, even fluctuate wildly.

A naive solution is to synchronize the sampling period of NR data and DIP data.
However in practice, in a short time period (say, one day), invocation times are very
small for most users. So it is of small significance to rank the DApps when users
behaviors are sparse, and the properties discretized in Section 5 are not guaranteed to
be satisfied.

So our strategy is to properly extend the sampling period to gather enough invo-
cation behaviors and bound the variation of users’ NRs simultaneously. The variation
of an address’s NR is shown in Figure 2. Here we divide a whole ranking process of
DIP into several time periods. According to the data about the variations of NRs, pick
integer t such that the variance of NR within t days less than a threshold τ holds for
most users. We take t days as a sampling period, by gathering the average NR val-
ues of voters and invocation data during the time period, to compute DApp’s ranking
score and developers’ final reward. Then we take the average data over all time periods
during a ranking process as the final results.

4 Developer Incentive Protocol
Based on the model in previous section, we introduce the Developer Incentive Pro-
tocol in this section. DIP includes two steps: ranking the DApps and rewarding the
developers. Specifically, from voters’ invocation behaviors to developers’ final reward,
it includes four transformations: invocation times 1→ voting capacity 2→ contributory
value 3→ ranking score 4→ final reward.

4.1 Voting Capacity and Contributory Value

For any voter ai, we use Γi to denote his voting capacity, which can be regarded as
the total number of votes voter ai has. [1] proves that voter’s NR value is an effective

10

2018/07/31 2018/09/25

3.4

3.6

3.8

4

4.2

4.4

·108

t1 t2 t3 t4

date

N
R

va
lu

e

Figure 2: NR variation graph of an address on Nebulas mainnet. The mainnet address
is n1Ugq21nif8BQ8uw81SwXHK6DHqeTEmPRhj.

measurement of his account’s value. So in DIP, the NR is also used as a significant
criterion to decide voters’ voting capacities. For voter ai, his voting capacity can be
represented as a function of his NR value:

Γi = f(C(ai)) (3)

where C(ai) represents voter ai’s NR value.
Normally, we wish f to be an increasing function, i.e., voters with higher NR values

have larger voting capacities. Here we give a satisfactory function:

f(C(ai)) = C2(ai). (4)

In other words,

Γi = C2(ai). (5)

It is analyzed that this function has nice properties, e.g., against Sybil attack. See

11

Section 5.
Then we discuss the mechanism for distributing voting capacities. According to

Section 5, Γij represents the contributory value of voter ai to DApp dj. We define it as
follows:

Γij =
eij

ei0 +
∑n

j=1 eij
Γi. (6)

Formula 6 can be understood as the ratio of the invocation times to dj to the total
invocation times. Here ei0 represents the invocation times which do not belong to any
DApp. A voter can arbitrarily adjust the values of ei0 and eij’s.

With the introduction of ei0, it holds that

n∑
j=1

Γij ≤ Γi.

It is notable that formula 6’s purpose is to let voters arbitrarily distribute their NRs
for voting (by arbitrarily choose contributory values). In practice, it is possible that
some DApps forcibly increase the number of invocations (by only receiving doubled
invocations), but since all NRs and the number of invocations are public, a voter can
still achieve the distribution of contributory values he want by adjusting his invocation
times.

The reason for introducing ei0 is that, for remaining voters’ individual rationals
(IR), i.e., voters’ interests will not be damaged, we do not force voters to cast all their
votes. Voters can selectively exercise part of his voting rights or totally abstain, by
properly increasing the value of ei0.11

4.2 Ranking Score

Given all voters’ contributory values to DApps, we are able to compute the ranking
scores of DApps: Given all contributory values Γij, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, we
define Dapp dj’s ranking score to be a multivariate function over contributory values
from all voters:

Sj = g(Γ1j,Γ2j, . . . ,Γmj) (7)
11ei0 can be implemented by setting an empty smart contract officially, which does not contain any

actual effectiveness. Voters can invoke the empty smart contract any times.

12

Similarly, here we give a satisfactory function:

g(Γ1j,Γ2j, . . . ,Γmj) =
m∑
i=1

√
Γij (8)

That is, a DApp’s ranking store equals to the sum of square roots of its contributory
values from all voters. It is not hard to see that, for a user ai, when he only votes for
one DApp (assume that he does not discard any vote), his total contributory value is
√
Γi. When he casts his votes to several different DApps, his total contributory value

increases due to the property
√
a+ b <

√
a+

√
b of the square root function. In other

words, the voter gets in touch with more DApps, which is encouraged by our system.
In Section 5, we will prove detailed properties for our construction. Similar method are
referred in [12].

Given ranking scores Sj, j = 1, 2, . . . ,m, the ranks of DApps are determined accord-
ingly. For example, in Nebulas nano client12, high ranked DApp are listed on prominent
positions and will attract more attentions.

4.3 Final Reward

DIP offers voters a reliable ranking list of DApps.13 For developers, we need to distribute
the rewards to them according to their ranking scores.

Given all DApps’ ranking scores, define the reward of DApp dj’s developer to be:

Uj =
S2
j∑n

k=1 S
2
k

· λM (9)

where M is the total amount of the reward pool for developers, comes from the new-
block rewards. λ is define to be the participation factor, that is, we want the total
amount of rewards increases with the total NR values of voters. The specific definition
is as follows:

λ = min{ Γp

αΓs

·min{
βΓ2

p

σ2(Γp)
, 1}, 1}, (10)

where
Γp =

m∑
i=1

(Γi − Γi0), Γi0 =
ei0Γi

ei0 +
∑n

j=1 eij
,

12https://nano.nebulas.io/
13We assume that voters only care about the ranks of DApps he like, while the developers’ rewards

are not concerned by voters.

13

https://nano.nebulas.io/

i.e., the total effective voting capacities of all voters,

Γs =
m∗∑
i=1

Γi,

the total voting capacity (the square of NR value) of all users in the community, σ is
the standard deviation (square root of variance) of all voters’ effective voting capacities:

σ2(Γp) =
m∑
i=1

(Γi −
1

m
Γp)

2

of which its maximum value is (m−1)2

m2 Γ2
p, and α, β < 1 are adjustable parameters.

The purpose of introducing the participation factor λ is to expect the total voting
capacities of voters more than a threshold (the total voting capacities of community
users times α) and to bound the variance of voters’ voting capacities, preventing the
case with several high-NR voters along with lots of low-NR fake accounts. The two
terms can complement each other, i.e., when the participation rate is high, we can
ignore the effect of the variance.

5 Property Analysis
Have introduced the Developer Incentive Protocol, in this section, we analyze manip-
ulations that could occur in practice and the properties against manipulation of DIP.
From the voters and developers’ points of view respectively, manipulations including
buying over, maliciously splitting DApp, Sybil attack and so on.

5.1 Buy Over Voters

The so-called buy over means that a developer lets voters’ cast all their votes to the
developer’s DApp, by means of bribing or other, which is very common in the real life.
Here we suppose that all voters are self-interest. We assume that normal voters only
care about the ranks of the DApps they like, rather than the final rewards of developers.
In other words, a normal voter wants to maximize the total weighted ranking scores of
all DApps he likes. Our quadratic ranking algorithm guarantees the following property:

Property 3. In the DIP model, for a self-interested normal voter, generally, he will cast
his votes to multiple DApps.

We illustrate the property by the following model: suppose the weights that voter ai

14

values all DApps are bi1, bi2, . . . , bin respectively (can be regarded as the true preference
of the voter to all DApps). Taking the form of 8, the voter’s contributory values satisfy

bi1√
Γi1

=
bi2√
Γi2

= · · · = bin√
Γin

.

In other words, voter ai’s contributory values matches his true preference to DApps.
The detailed proof is in Section A.1.

Traditional voting models usually compute the ranking score linearly, i.e.,

g(Γ1j,Γ2j, . . . ,Γmj) =
m∑
i=1

Γij.

In this model, a rational voter only cast his votes to the DApp he likes the most. In
comparison, formula 8 can promote the interactions between voters and DApps, due
to the property of the square root function. In other words, voters voting for multiple
DApps maximizes the utilization of his voting capacity. Similar analysis can be found
in [12]. To sum up, a voter would vote for multiple DApps and keep the priority of
DApps he likes the most simultaneously, i.e.the ratio equation above.

In practice, sometimes traditional linear voting model will limit the maximum votes
for a voter to a DApp, to forcibly let voters disperse their votes, while our algorithm
achieves the same goal by the means of essential incentive, with a more elegant and
simple mathematical expression.

Corollary 1. The total contributory values of a voter who is bought over is far less than
the total contributory values of a normal voter.

For a voter ai who is bought over, he can at most offer the DApp with contributory
value with amount

√
Γi. For a normal voter who is not bought over, assuming that

he plans to vote for K DApps,14 when his value weights to these DApps are uniformly
distributed, the total increment of ranking scores over all DApps caused by the voter
is at the over of O(

√
KΓi), that is, the efficiency of a normal voter is K times the

efficiency of a voter who is bought over. Therefore the cost of the manipulation about
buying over is increased.

14K reflects the number of DApps of which the contributory values from the voter can discriminate
with other DApps, which is usually larger than 1, as long as the voter’s value weights of the K DApps
are not extremely distributed, i.e., the voter only votes for a particular DApp and the votes for other
DApps tent to 0

15

5.2 Malicious Splitting

For developers, another manipulation is to maliciously split their DApps, in order to
obtain higher total rewards of all splitted DApps. Intuitively, splitting can increase the
number of DApps that participant in the reward mechanism and thus increase the total
final rewards. However our model guarantees that it is not the case. Here we assume
that all developers concern their final rewards (total bonus) as well as the potential
utility caused by the improvement of ranks.

Specifically, as the algorithm of final rewards, the convexity of formula 9 guarantees
the following property:

Property 4. If all voters are normal, splitting DApps will not increase the reward of the
developer.

It is assumed that a normal voter belongs to the following cases: i). voter simply
distributes his votes that are supposed for the original DApp to split DApps. Such
case occurs when an application has different smart contract addresses for invocation.
ii). Suppose that the voter values the original DApp with weight a, and with weights
b and c for two split DApps respectively, then c > a + b. Such case can be illustrated
that after splitting, the split DApps’ qualities are greatly decreased due to the lack of
linkages. So the total qualities of split DApps’ is lower than the quality of the original
DApp.

In both cases, the final reward of the developer does not increase. Detailed proof is
in Section A.2.

Furthermore, a developer can buyer over voter and split his DApp simultaneously:
he first splits his DApp to K DApps. Then, he lets his bought-over voters distribute
their votes uniformly to split DApps, thus maximizing the utilization of bought-over
voters. We have the following corollary against this case:

Corollary 2. Even with the introduction of bought-over voters, the developer cannot
increase his final rewards by splitting his DApps.

Detailed proof is in Section A.3.
It is notable that, the rank of DApps will be decreased if developers split DApps,

thus the potential utility is also decreased. In summary, our algorithm essentially
prevents malicious splitting.

Without doubt that for a developer that develops multiple different DApps, since
there is no mirrored of split relations among the DApps, the utility of the developer is
not affected.

16

5.3 Sybil Attack

By generalized Sybil Attack we mean an attack subverts the reputation system by
creating a large number of pseudonymous identities, using them to gain a dispropor-
tionately large influence [13]. In Nebulas Yellow Paper [1], the properties of NR against
manipulations that increase NR by creating a large number of new accounts have been
proved. So in the DIP ranking algorithm, voters are also not able to increase NR by
creating new accounts, i.e.,

C(c) > C(a) + C(b)

where c is the original account, a, b are the split sub-accounts. According to formula 6
their voting capacities satisfy the following constraint:

√
Γa+b >

√
Γa +

√
Γb (11)

Suppose that the propose of a voter to execute Sybil attack is to increase the ranking
score of a specific and the final rewards of its developer. According to the constraint
above we have the following property:

Property 5. For any voter, executing Sybil attack will not increase the ranking score of
the DApp he votes and the final reward of the DApp’s developer.

So the property against Sybil attack is guaranteed.

6 Implementation of DIP
The complete implementation of DIP is out of scope of this paper. So here we only
discuss the key issues should be handled when implementing DIP.

6.1 How to Distribute Rewards

For distributing rewards, a special account D should be established. In the meanwhile,
a part of the new-block rewards is transferred to D according to a fixed ratio.

Developers’ deserved rewards will be sent regularly.15. In order to send rewards on
the blockchain, the private key of the account that sends rewards is required for signing
the transaction of sending. Therefore, for the purpose of security, the account D for
sending rewards needs a special treatment.

15The time interval of sending rewards equals to the sampling interval in Section 3.3

17

Firstly, a special kind of transaction is added to the system, denoted by dip trans-
action, which contains the information about the amount of deserved reward of a de-
veloper and the height of the blockchain. Secondly, the system refuses all transactions
other than dip initiated by D, to ensure that no account can extract tokens from D.
Finally, verification nodes on the blockchain need to verify the dip transactions. Par-
ticularly, verification nodes need to run DIP locally and verify whether the data in dip
transactions coincident with local results.

Through the methods mentioned above, not only the rewards for developers are
distributed normally, but also the security of account D for sending rewards is ensured.

6.2 Updating of DIP

As we know, the DIP is closely related to the whole ecosystem. As the variance of the
ecosystem, DIP ought to be updated, particularly, the parameters in the DIP model.
So how to effectively update the DIP turns out to be a key issue.

For this, we use Nebulas Force to iteratively update DIP.
We update the blocks’ structures to contain algorithms and parameters in DIP (by

the form of LLVM IR). Nebulas Virtual Machine (NVM), as the engine of the algorithm,
gets algorithm and parameters from blocks and run algorithms, to obtain the amount
of tokens that an account deserves.

When algorithms and parameters need to be updated, Nebulas group will work
together with the community, letting new blocks contain updated algorithms and pa-
rameters, to ensure the timeliness and smoothness of the whole updating process and
avoid any possible forks.

7 Future Work

7.1 Muli-dimension Voting

In Section 3.2, we take the number of invocations as the criterion to determine DApps’
ranking scores and show reasons why token transfers involved in invocations are not
taken into consideration. In the future, we may introduce token transfers as another
criterion for ranking DApps when we can distinguish the causes of token transfer in
more details by analyzing the invocations to smart contract.

18

7.2 Invocations Among DApps

Currently, DApps’ ranks are determined by users’ voting capacities (NR values), which
come from invocations of DApps. However, more complicated invocation behaviors,
such as invocations among DApps, can further transmit users’ voting capacities. So
in our future work, we may compute each DApp’s final ranking score by giving each
DApp an initial ranking score and running the Page Rank algorithm [14].

References
[1] “Nebulas yellowpaper.” https://nebulas.io/docs/NebulasYellowpaperZh.

pdf.

[2] “Nebulas whitepaper.” https://nebulas.io/docs/
NebulasTechnicalWhitepaperZh.pdf.

[3] A. Mukherjee, A. Kumar, B. Liu, J. Wang, M. Hsu, M. Castellanos, and R. Ghosh,
“Spotting opinion spammers using behavioral footprints,” in Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 632–640, ACM, 2013.

[4] N. Jindal and B. Liu, “Opinion spam and analysis,” in Proceedings of the 2008
international conference on web search and data mining, pp. 219–230, ACM, 2008.

[5] K. Yoo and U. Gretzel, “Comparison of deceptive and truthful travel reviews,”
Information and communication technologies in tourism 2009, pp. 37–47, 2009.

[6] M. Ott, Y. Choi, C. Cardie, and J. T. Hancock, “Finding deceptive opinion spam
by any stretch of the imagination,” in Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies-
Volume 1, pp. 309–319, Association for Computational Linguistics, 2011.

[7] Q. Cai, A. Filos-Ratsikas, C. Liu, and P. Tang, “Mechanism design for person-
alized recommender systems,” in Proceedings of the 10th ACM Conference on
Recommender Systems, pp. 159–166, ACM, 2016.

[8] A. Salihefendic, “How hacker news ranking algorithm works,” 2010.

[9] A. Salihefendic, “How reddit ranking algorithms work,” Hacking and Gonzo,
vol. 23, 2010.

[10] E. Miller, “How not to sort by average rating,” 2009.

19

https://nebulas.io/docs/NebulasYellowpaperZh.pdf
https://nebulas.io/docs/NebulasYellowpaperZh.pdf
https://nebulas.io/docs/NebulasTechnicalWhitepaperZh.pdf
https://nebulas.io/docs/NebulasTechnicalWhitepaperZh.pdf

[11] “IMDB.” https://www.imdb.com/chart/top.

[12] V. Buterin, Z. Hitzig, and E. G. Weyl, “Liberal radicalism: Formal rules for a
society neutral among communities,” arXiv preprint arXiv:1809.06421, 2018.

[13] D. Quercia and S. Hailes, “Sybil attacks against mobile users: friends and foes to
the rescue,” in INFOCOM, 2010 Proceedings IEEE, pp. 1–5, IEEE, 2010.

[14] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.,” tech. rep., Stanford InfoLab, 1999.

20

https://www.imdb.com/chart/top

Appendix A Proof

A.1 Proof of Property 3

Proof. Without loss of generality, we assume that the weights that voter ai values
all DApps are bi1, bi2, . . . , bin respectively, which are fixed. We assume that voter ai’s
contributory values to all DApps are Γi1, . . . ,Γin respectively, which are adjustable by
voter ai.

The optimization objective of voter i is the weighted sum of ranking scores that he
offers, defined by

wi =
n∑

j=1

bij
√

Γij

According to Cauthy’s inequality it holds that

wi =
n∑

j=1

bij
√
Γij ≤ (

n∑
j=1

b2ij)(
n∑

j=1

Γij) ≤ (
n∑

j=1

b2ij)Γi

The most right side of the formula above is a fixed value. The equality holds if and
only if

b2i1
Γi1

=
b2i2
Γi2

= · · · = b2in
Γin

So the property is proved.

A.2 Proof of Property 4

Proof. Without loss of generality, we assume that d1’s developer splits d1 into two
DApps. For any normal voter who belongs to the second case in section 5.2, that is,
assume the weights that he values all DApps before splitting is bi1, bi2, . . . , bin and the
weights that he values the two split DApps are b′i1, b

′
i2, it holds that bi1 ≥ b′i1 + b′i2

according to our assumption.
Then we compute the contributory values of voter ai before splitting. Define Hi =∑n

j=2 b
2
ij, according to the conclusion in Property 3 and Partition ratio theorem we have

Γi1

b2i1
=

∑n
j=1 Γij∑n
j=1 b

2
ij

=
Γi

b2i1 +Hi

Similarly, the contributory value of voter ai to the t-th split DApp (denote by Γ′
it, t =

1, 2) is

Γ′
it =

b
′2
itΓi

b
′2
i1 + b

′2
i2 +Hi

21

Note that b2i1 ≥ (bi1 + bi2)
2 > b

′2
i1 + b

′2
i2, we have

Γi1 > Γ′
i1 + Γ′

i2

So we give the constraint of contributory values for a rational enough voter. Generally,
most voters belongs to the first case in Section 5.2, that is, they simply distribute their
contributory values that are supposed for d1 to split DApps. In either case, we have

Γi1 ≥ Γ′
i1 + Γ′

i2

Define S ′
1, S

′
2 to be the two split DApps’ ranking scores respectively. By definition

S ′
1 =

m∑
i=1

√
Γ′
i1, S ′

2 =
m∑
i=1

√
Γ′
i2, S1 =

m∑
i=1

√
Γi1

Define U ′
1 to be the final reward of d1’s developer after splitting. By definition

U ′
1 =

S
′2
1 + S

′2
2

S
′2
1 + S

′2
2 +

∑n
j=2 S

2
j

λM, U1 =
S2
1

S2
1 +

∑n
j=2 S

2
j

λM

Note that given S2, . . . , Sn,

U1 ≥ U ′
1 ⇔ S2

1 ≥ S
′2
1 + S

′2
2

In order to show whether splitting increases the utility, we only need to compare the
following two terms

S2
1 = (

m∑
i=1

√
Γi1)

2, S
′2
1 + S

′2
2 = (

m∑
i=1

√
Γ′
i1)

2 + (
m∑
i=1

√
Γ′
i2)

2

Actually, S2
1 ≥ S

′2
1 + S

′2
2 can be proved according to the shortest distance theorem.

As shown in Figure 3, we construct a grid whose length and width are divided into m

segments, the i-th segment of which has length
√
Γ′
i1 and

√
Γ′
i2 respectively.

Then, S ′2
1 + S

′2
2 = A0A

2
m, that is, equals to the square of the blue segment’s length.

In the meanwhile,

S2
1 = (

m∑
i=1

√
Γi1)

2 > (
m∑
i=1

√
Γ′
i1 + Γ′

i2)
2 = (

m∑
i=1

Ai−1Ai)
2

, which equals to the sum of squares of all red segments. Since the shortest distance
between two points is a line-segment, it holds that S2

1 > S
′2
1 + S

′2
2 .

22

A0

A1

A2

Am−1

Am

√
Γ′
11

√
Γ′
21

...

√
Γ′
m1

√
Γ′
12

√
Γ′
22

. . .
√

Γ′
m2

. . .

. . .

. . .

...

Figure 3: Proof by shortest distance

For the cases where k > 2 DApps are split, we can regard it as successive splits and
iteratively use the result on k = 2.

So the property is proved.

A.3 Proof of Corollary 2

Proof. For any voter that is bought over by d1’s developer, before splitting, we can re-
gard the voter as a normal voter who values all DApps with weight vector (1, 0, 0, . . . , 0),
as he gives his all voting capacity to d1. Suppose now d1 is split into k DApps and the
bough-over voter’s contributory values to the k DApps are Γt1, . . . ,Γtk, whose sum is
fixed. According to the condition that the equality holds for Cauthy’s inequality in the
proof of Property 3, the voter can be regard as a normal voter who values all DApps
with weight vector (

√
Γt1/C,

√
Γt2/C, . . . ,

√
Γtk/C, 0, 0, . . . , 0), where C =

∑k
j=1

√
Γtj.

That is, the voter values the split DApps with weights according to kind of proportion
and values all other DApps with 0 weights. 16. Since

k∑
j=1

√
Γtj/C = 1

so the case in this corollary can be reduced to the case about normal voters(Property 4).
So the corollary is proved.

16Note that scaling all weights by a constant does not effect the results, since the total contributory
value of the voter only depends on the proportions of weights to total weights

23

A.4 Proof of Property 5

Proof. We first consider the case that a voter splits his account into two sub-accounts.
We fix the actions of other voters. Let c to be the original account and a, b to be the
split sun-accounts, S, S ′ to be the ranking score of the DApp that the voter plans to
vote before and after splitting respectively, U,U ′ to be the final reward of the developer
of the DApp that the voter plans to vote before and after splitting respectively. By
definition, we have

S =
√

Γc +O, S ′ =
√
Γa +

√
Γb +O

, where O is the sum of contributory values by other voters, which is fixed.
By 11 it holds that S < S ′. That is, the rank of the DApp does not increase.
In the meanwhile, by definition,

U =
S

S + P
λM, U ′ =

S ′

S ′ + P
λM

, where P is the sum of squares of other DApp’s ranking score, which is fixed.
Since S < S ′ it holds that U ≤ U ′. That is the developer’s final reward does not

increase.
For the cases where k > 2 sub-accounts are split, we can regard it as successive

splits and iteratively use the result on k = 2.

Appendix B Change log

B.1 2019.4.8 change log

• Replace the function from NR to capacities (4) by f(C(ai)) = C(ai)

• Replace the calculation of the participation factor λ (10) by min{0.008
1−r

, 1}, where
r = Γp

Γs

• Fix typos.

24

	Introduction
	Background
	DApp's Developer Incentive
	Nebulas Rank
	Voting Mechanism

	Developer Incentive Model
	Model Representation
	Voting Action
	Sample Time Interval

	Developer Incentive Protocol
	Voting Capacity and Contributory Value
	Ranking Score
	Final Reward

	Property Analysis
	Buy Over Voters
	Malicious Splitting
	Sybil Attack

	Implementation of DIP
	How to Distribute Rewards
	Updating of DIP

	Future Work
	Muli-dimension Voting
	Invocations Among DApps

	Appendix Proof
	Proof of Property 3
	Proof of Property 4
	Proof of Corollary 2
	Proof of Property 5

	Appendix Change log
	2019.4.8 change log

