
Document number: N2
Date: 2019-04-12
Project: Nebulas Mainnet
Reply-to: Xuepeng Fan

<xuepeng.fan@nebulas.io>

Arthur Proposal:
The Parameters and Functions for

DIP and NR

mailto:xuepeng.fan@nebulas.io

1 Introduction

This proposal includes all parameters and functions for DIP(Developer Incentive Protocol) and
NR(Nebulas Rank). Although the Yellow paper1 and the Mauve paper2 described the algorithm
and properties of NR and DIP, concrete functions and parameters are left blank.

More specifically, this proposal includes

• The period time of Nebulas Rank is to be 40320 blocks, which is 7 days.

• The period time of the forwading loop is to be 128 blocks.

• The Equation 17 in the Yellow paper is to be

γ(v) = (
G(v)

G(v) + 1
)2

• The Equation 21 in the Yellow is to be

C(v) =
β(v)

1 + (100/β(v))0.5
· γ(v)

• The Equation 7 in the Mauve paper is to be

f(C(ai)) = C(ai)

• The ei0 in the Equation 6 in the Mauve paper is to be 0.

• The Equation 10 in the Mauve paper is to be

λ = min{ 0.008

1− Γp

Γs

, 1}.

2 Motivation and Scope

For the significance of NR and DIP, you may check the Yellow paper and the Mauve paper.

The parameters and functions described in this proposal may affect all NAS token holders, as
they may have different ranking scores according to NR. Also, this proposal may affect all DApp
developers on Nebulas, as they may get reward according to DIP.

Finally, this proposal also affect Nebulas mainnet developers, since they need to implement the
detailed functions and update the parameters.

1https://nebulas.io/docs/NebulasYellowpaper.pdf
2https://nebulas.io/docs/NebulasMauvepaper.pdf

1

https://nebulas.io/docs/NebulasYellowpaper.pdf
https://nebulas.io/docs/NebulasMauvepaper.pdf

3 Impact on the Nebulas Protocol

This proposal largely affect the Nebulas Protocol. And the old Nebulas Protocol implementation
can’t be compatible with the proposal described here. Specifically, each Nebulas node should
upgrade in order to verify the DIP reward transactions, which needs all details specified in this
proposal.

4 Design Choices

There are several parameters are not specified in the Yellow paper and Mauve paper. Here we
discuss how we choose the concrete value and the tradeoffs we make.

4.1 The Period of Time for the Core Nebulas Rank

In the Section 4 of Yellow paper, we described

Core Nebulas Rank is used to measure the contributions of a user in reference to the
entire economy over a certain period of time.

We hope the Core Nebulas Rank is stable if users are active enough. Thus, we find that 1 week is
practical. If it’s too long, computation cost is too large, while it’s unstable if it’s too short.

4.2 The period time of the forwarding loop

Actually, we didn’t have this in the Yellow paper. However, we find that finding forwarding
loops could be time-consuming. Finding loops in a transaction graph which contains millions of
transactions could take hours. Thus we decide to reduce the problem size. And we only find
forwarding loops in a transaction graph built from 128 blocks.

The side effect is that users may construct forwarding loop across this time period, instead of inside
this time period. Still, users may do this to improve the NR, yet still with upper bond.

We may adjust this by introducing some randomness.

4.3 The equations in the Yellow paper

4.4 The equations in the Mauve paper

5 Technical Specifications

The NR and DIP can be updated via NBRE (Nebulas Blockchain Runtime Environment), since
the algorithms are already included in nbre/runtime 3. Here are present all details about the

3https://github.com/nebulasio/go-nebulas

2

submitted code.

5.1 NR source code

#include "runtime/nr/impl/nr_impl.h"

neb::rt::nr:: nr_ret_type entry_point_nr(

neb:: compatible_uint64_t start_block ,

neb:: compatible_uint64_t end_block) {

auto to_version_t = [](uint32_t major_version ,

uint16_t minor_version ,

uint16_t patch_version)

-> neb::rt::nr:: version_t {

return (0ULL + major_version) +

((0ULL + minor_version) << 32) +

((0ULL + patch_version) << 48);

};

neb:: compatible_uint64_t a = 100;

neb:: compatible_uint64_t b = 2;

neb:: compatible_uint64_t c = 6;

neb:: compatible_uint64_t d = -9;

neb::rt::nr:: nr_float_t theta = 1;

neb::rt::nr:: nr_float_t mu = 1;

neb::rt::nr:: nr_float_t lambda = 2;

return neb::rt::nr:: entry_point_nr_impl(start_block ,

end_block , to_version_t (0, 0, 1), a, b, c, d,

theta , mu , lambda);

}

5.2 DIP source code

#include "runtime/dip/dip_impl.h"

extern neb::rt::nr:: nr_ret_type

entry_point_nr(neb:: compatible_uint64_t start_block ,

neb:: compatible_uint64_t end_block);

neb::rt::dip:: dip_ret_type entry_point_dip(

neb:: compatible_uint64_t height) {

neb::rt::dip:: dip_ret_type ret;

std::get <0>(ret) = 0;

uint64_t block_nums_of_a_day = 5;

uint64_t days = 1;

3

neb:: compatible_uint64_t dip_start_block = 15;

neb:: compatible_uint64_t dip_block_interval =

days * block_nums_of_a_day;

std:: string dip_reward_addr =

std:: string("n1c6y4ctkMeZk624QWBTXuywmNpCWmJZiBq");

std:: string coinbase_addr =

std:: string("n1HrPpwwH5gTA2d7QCkVjMw14YbN1NNNXHc");

auto to_version_t = [](uint32_t major_version ,

uint16_t minor_version ,

uint16_t patch_version)

-> neb::rt::dip:: version_t {

return (0ULL + major_version) +

((0ULL + minor_version) << 32) +

((0ULL + patch_version) << 48);

};

if (! height) {

std::get <1>(ret) = neb::rt::dip:: dip_param_list(

dip_start_block , dip_block_interval ,

dip_reward_addr , coinbase_addr ,

to_version_t (0, 0, 1));

std::cout << "dip param list returned" << std::endl;

return ret;

}

if (height < dip_start_block + dip_block_interval) {

std::get <1>(ret) = std:: string("{\"err \":\" invalid height \"}");

return ret;

}

uint64_t interval_nums = (height - dip_start_block) /

dip_block_interval;

neb:: compatible_uint64_t start_block =

dip_start_block + dip_block_interval * interval_nums;

neb:: compatible_uint64_t end_block = start_block - 1;

start_block -= dip_block_interval;

auto nr_ret = entry_point_nr(start_block , end_block);

neb::rt::dip:: dip_float_t alpha = 8e-3;

neb::rt::dip:: dip_float_t beta = 1;

return neb::rt::dip:: entry_point_dip_impl(start_block ,

end_block , to_version_t (0, 0, 1), height ,

nr_ret , alpha , beta);

4

}

6 Acknowledgement

Thank Yulong Zeng for the design of DIP, Zaiyang Tang for the design of NR, and Chenmin Wang
for the implementation.

5

	Introduction
	Motivation and Scope
	Impact on the Nebulas Protocol
	Design Choices
	The Period of Time for the Core Nebulas Rank
	The period time of the forwarding loop
	The equations in the Yellow paper
	The equations in the Mauve paper

	Technical Specifications
	NR source code
	DIP source code

	Acknowledgement

